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The local implications of the well-known flux conservation equations of Morton et al.
(Proc. R. Soc. Lond. A, vol. 234, 1956, p. 1) for plumes and jets are considered. Given
the vertical velocity distributions of a model plume or jet, the divergence-free radial ve-
locity distributions are calculated. It is shown that in general the velocity of the plume
boundary is not described by the local total fluid velocity in this way. A two-fluid
model tracking the evolution of both ‘plume’ and ‘ambient’ fluid is proposed which
resolves this apparent inconsistency and also provides a way of explicitly describing the
mixing process within a model plume. The plume boundary acts as a phase boundary
across which ambient fluid is entrained, and the plume boundary moves at the velocity
of the plume fluid. The difference between the plume-fluid radial velocity and the
total fluid velocity quantifies in a natural way the purely horizontal entrainment flux
of ambient fluid into the plume across the phase boundary at the plume edge.

1. Introduction

The paper of Morton, Taylor & Turner (1956) entitled ‘Turbulent gravitational
convection from maintained and instantaneous sources’ remains one of the most
significant publications in the field of buoyancy-driven flows. With far reaching
implications for large-scale flows in the atmosphere and oceans, to much smaller
scale flows within naturally ventilated buildings, it is no wonder that this paper is
still widely cited across many disciplines. The Boussinesq plume model (which we
refer to herein as ‘the MTT model’) developed in their paper is a model for the bulk
quantities (assumed to be, on average, steady in time) of a plume and relies solely
upon the conservation of fluxes of volume, specific momentum and specific buoyancy.

The MTT model describes vertical variations in volume, specific momentum and
specific buoyancy fluxes. With knowledge of these quantities, it is possible to derive
expressions for the plume radius, vertical velocity field and buoyancy forces acting
on the plume fluid as functions of height above the plume source. The MTT model
is often applied to flows in incompressible fluids, and so knowledge of the vertical
variations of the bulk quantities immediately implies corresponding radial variations.
These required radial counterparts to the vertical motions have, to date, been largely
overlooked and it is the local radial properties of the flow which we investigate in the
present paper.
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The simple, but powerful, assumption that lies at the heart of the MTT model is
the entrainment assumption (see Turner 1986 for a detailed review). This assumption
requires that the ambient fluid entrained into a plume at a given height and time is
proportional to the vertical velocity at the plume centreline at the same height and
time. The philosophy behind this assumption is that the entrainment into a plume at
a turbulent plume boundary depends on the turbulence intensity of the plume fluid,
which can be characterized by the centreline plume velocity.

In the present paper we seek a deeper understanding of the local properties of the
MTT model by investigating the radial velocity field of a model plume. In so doing,
it will become apparent that there are some potential conceptual difficulties with the
MTT model. For example, the velocity of the plume boundary cannot be simply
described in terms of the local total fluid velocity. There is no explicit explanation
of how ambient fluid is mixed within the plume and relabelled as plume fluid. The
entrainment assumption is fundamentally a turbulence closure, and so there is no
explicit description of turbulent fluctuations within the MTT model. Therefore, it is
not formally consistent, within the MTT framework, to appeal to such processes to
provide the desired properties of the model solutions.

We propose a simple two-fluid model to reconcile the apparent difficulties with
the MTT model with our physical intuition. We regard the fluid at a given point as
comprising ambient fluid with volume fraction a and plume fluid with volume fraction
p, where a + p = 1. We show that the plume boundary acts as a phase boundary and
that there is a continuous flux of ambient fluid across this plume boundary. The
velocity of the plume boundary is described by the local velocity of the plume fluid.
The process whereby entrained ambient fluid is converted into plume fluid is made
explicit and is consistent with the MTT model system.

The outline of the paper is as follows. In §2.1 we establish our two-fluid model
and its notation. The MTT model is usually applied with a top-hat or Gaussian
profile imposed on the vertical velocity field of the plume fluid. Therefore, in §2.2,
we introduce a general one-parameter family of plume profiles (of which both top-
hat, as a limit, and Gaussian profiles are members) and the corresponding version
and solutions of the MTT model. In §3.1 we apply our two-fluid model to the more
physically intuitive top-hat plumes and then generalize this in § 3.2 to our more general
continuous shape profiles, including Gaussian profiles as a special case. Finally in §4
we draw our conclusions.

2. General results
2.1. Two-fluid method

We describe the fluid at a given point as a superposition of two fluids, an ambient
fluid, and a plume fluid. At a given point in space there exists ambient fluid with
volume fraction a and velocity u,, and plume fluid with volume fraction p and velocity
u,, where a + p = 1. Defining the reduced gravity at a given point as g’ = g(,0, — )/ Pa>
where p is the total fluid density, p, is the density of the plume fluid, and p, is the
density of the ambient fluid, the fluid velocity and reduced gravity at a given point
are given by

u=au,+ pu, g =pg, (2.1)

since the reduced gravity of the ambient fluid is zero by definition, i.e. g, = 0. We
impose incompressibility so that

Veu=0. (2.2)
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It follows from (2.1) and (2.2) that
V- (pu,) =—V-(au,). (2.3)

Equation (2.3), as we shall see, is an explicit statement of how ambient fluid is
converted into plume fluid and it is this essential equation that describes the mixing
within the plume. Entrainment of ambient fluid provides a source of plume fluid, with
the ambient fluid being relabelled as plume fluid according to (2.3). The generation
of plume fluid from ambient fluid is intuitively satisfactory from a physical viewpoint
as the vertical volume flux within a plume increases with height. Hence, (2.3) is an
explicit statement about mixing within a plume which does not appeal to turbulent
fluctuations, and is self-consistent within the MTT model framework.

The application of the two-fluid model is as follows. The MTT model gives an
explicit solution of the plume-fluid vertical velocity, w,. If an appropriate statement
can be made about the divergence of the plume fluid, i.e. V- u,, then the radial plume
velocity u, can be written down. The total divergence of the plume fluid at a given
height is equal to the amount of fluid being entrained at that height, i.e.

on / V- u,rdr =—2nbu,, (2.4)
0

where b is identified with the plume radius and u, is the ‘entrainment velocity’. Once
the velocity of the plume fluid, u,, is known then (2.3) prescribes the ambient fluid
velocity u, and hence (2.1) yields the total incompressible-fluid velocity.

2.2. The MTT model for a general shape profile

In this section we will see that, within the two-fluid framework, the volume fraction, p,
of plume fluid at a given height can represent the well-known shape profile function,
for example top-hat or Gaussian. The vertical velocity, w,, and the reduced gravity,
g,» are the vertical velocity and reduced gravity of the plume fluid, respectively.
Using cylindrical polar coordinates where r denotes the horizontal radial distance
from the vertical axis and b(z) denotes the plume radius at a given height z, we let
the volume fraction of plume fluid, p, at a given point be described by the shape

profile function
r n
r=oo{~(55) } )

The parameter n is chosen to give a specific shape profile, where in particular n =2
defines a Gaussian shape profile, and the limit n — oo represents the top-hat shape
profile.

The vertical fluid velocity is given by w= pw, +aw,. Modelling the process of
entrainment as being purely horizontal, we impose the condition that the contribution
of the ambient fluid velocity to the total fluid velocity can only be horizontal, i.e.
aw, = 0. The vertical velocity of the plume fluid, w,, does not vary radially, although
the contribution to the total fluid velocity may vary radially since w = pw,(z).
Generalizing the method used by Morton et al. (1956) we define volume, specific
momentum and specific buoyancy fluxes respectively as

2I°(2/n)
n

_2/nn2F(2/n)
n

0= 2n/ wrdr=n b*w,, (2.6a)
0

M= 2n/ wrdr=2 b w, (2.6b)
0
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—2/nn2F(2/n)
n

F =2n / wg' rdr =2 bgw,. (2.6¢)
0

Here the Gamma function (see e.g. Abramowitz & Stegun 1965, §6.1) arises since
0 b2
/ prdr=—TI(2/n). (2.7)
0 n
(This should not be confused with the plume laziness parameter, e.g. Morton 1959;

Hunt & Kaye 2001.) It follows from (2.6) therefore that the plume radius, b, plume
vertical velocity, w,, and plume reduced gravity, g/,, are given by

2—2/n 172 22/nM 22/nF
b= n o w, = L g =" (2.8)
n 2I'(2/n) M1/2 0 P (0]
We make the standard entrainment assumption, u,= — aw, <0, where « is the

well-known ‘entrainment constant’ (Morton et al. 1956) taking typical values of
approximately 0.1. By considering the vertical gradient of the volume flux, momentum
flux and buoyancy flux in an unstratified ambient fluid, the MTT model is thus

40 n 12

e —2nbu, = 2mbaw, = 2aM'/? {22/n“2r(2/n)} ; (2.9q)
M [* , . 2r@/n) ., _QF

dF

@ o 2.
% 0 (2.9¢)

Assuming power-law behaviour (as shown in Caulfield & Woods 1995, general source
conditions converge to such solutions) (2.9) can be straightforwardly solved for Q,
M and F, or equivalently b, w, and g),, where (assuming Q(0)=0, M(0)=0 and
F(0)=Fy,>0)

6
b:%ﬁ’ (2.10a)
n
5 (9a\"? 15 s [2¢m 202/
w,=— (=) FPzY {} , (2.10b)
6a(10) T n
5 10\ 2Umar2/n)
=) R 2.1
8 = ba <9a) 0oz {n n } ’ (2.10¢)

the power-law dependence of which was originally derived by Zeldovich (1937). These
solutions are commonly referred to as the ideal plume solutions since they are derived
for initial conditions Q(0)=0, M(0)=0, which implies that the plume rises from a
point source of buoyancy flux alone. In particular (2.10b) gives us the vertical velocity
of the plume fluid, which is constant with radius, but decreases with height while
the plume radius, b, increases with height. These general properties have certain
implications for the radial velocity distribution, as discussed below.

1 For non-ideal source conditions it is possible for w, to increase with height, or indeed for b
to decrease with height, over some finite distance (see Caulfield 1991; Hunt & Kaye 2001) before
converging to a solution with w, decreasing and b increasing with height.
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3. The two-fluid model

In the following two subsections we apply the general two-fluid method described in
§2.1 to top-hat profile plumes in § 3.1 and then to plumes with general shape profiles
in §3.2, focusing on the implications of incompressibility for the radial velocity
distribution.

3.1. Top-hat profile

With a top-hat plume (unlike a Gaussian plume for example), a plume boundary is
well-defined, outside which there is no plume fluid. Exterior to the top-hat plume
we have only ambient fluid and hence a =1 and p =0. Conversely, inside a top-hat
plume p=1 and a =0. It is important to stress that in this extreme limit, au, is not
necessarily zero.

The MTT model given in §2.2 prescribes the plume fluid vertical velocity w,. In
order to apply the two-fluid method a statement about the divergence of the plume
fluid must be found. This is straightforward in the case of a top-hat plume. Since the
amount of fluid entering the plume at a given height is —2mbu, the only uniform,
top-hat, local divergence that can balance this entrainment of ambient fluid is given by

2nhu 2u,
— ¢ — b
Vou, =4 gz 0SB )75 =D (3.1)
0 (r > b) 0 (r > b),
which satisfies condition (2.4). It follows therefore that
rdw, u.r r db
——L = b —w— b
puy=d 2 b TP _)pvg b (3.2)
0 (r > b) 0 (r > b),

where the second form of the r < b solution follows from the conservation-of-volume

MTT equation (2.9a). It is apparent therefore that the radial velocity of the plume fluid

increases linearly with r from zero at the axis, and the velocity of the plume boundary,

wdb/dz (typically positive as noted above), is given by the local plume fluid velocity.
Inside the plume, (3.1) together with the fact that p =1 implies

2u,
V- (an,) = = (3.3)
b
Since aw, = 0, we find that inside the plume au, =u.r/b, and so we have that
”2’" (r <b)
amg =94, p (3.4)
 (r>b),
,

noting that au, is continuous across r = b. Since u, < 0, (3.4) implies that au, <0. The
implication of a — 0 inside the plume is that the velocity u, — —oo inside the plume
(allowing the self-consistent modelling of instantaneous entrainment and homogeniz-
ation of plume fluid within a top-hat framework). Hence we have from (3.4) that

rdw,
<—2dz,wp> (r <b)

<ueb,0) (r > b).
.

(3.5)

u =
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0.2

FiGURE 1. The streaklines of the ambient- and plume-fluid velocity fields are shown on the
left-hand side for r <0. The right-hand side, r >0 shows the streamlines of the combined
velocity field u = pu, +au,.

Typically u is positive inside the plume, dominated by the spreading of the plume due
to entrainment of ambient fluid, while u is negative outside the plume, where u is dom-
inated by the inward flow of ambient fluid to supply this entrainment. Therefore there
is, in general, a discontinuity in both u and u,, but not au,, at the plume boundary.
So, although there is both a discontinuity and a change of sign in the radial velocity,
u, ambient fluid may still cross the boundary into the plume and undergo a relabelling
and conversion into plume fluid within the plume. The plume boundary moves with
the velocity of the plume fluid, and there is a continual flux of ambient fluid across the
plume boundary (i.e. entrainment), so the plume boundary acts as a phase boundary.

Figure 1 shows on the left-hand side the streaklines for the ambient-fluid velocity
and plume-fluid velocity in a top-hat plume. The right-hand side shows the streamlines
for the total fluid velocity. On the left-hand side we see the ambient fluid remaining
horizontal as it propagates in towards the axis. The plume fluid has radial velocity
proportional to r for r < b and matches the velocity of the plume boundary at r =b.

3.2. General shape profiles

As with the top-hat plume, we assume that the amount of turbulent mixing into a
plume at a given point is proportional to the local amount of plume fluid, ie. p.
Intuitively it seems reasonable that an absence of plume fluid indicates that there
is no turbulent mixing of plume fluid and ambient fluid, and hence conversion of
ambient fluid into plume fluid, whereas a high concentration of plume fluid indicates
higher amounts of mixing. Hence, noting that the plume fluid divergence in (3.1) has
shape profile given by p (in the limit n — o0) we take

2u, n

Vet = T r

(3.6)

such that the plume-fluid divergence for general shape parameter n has shape profile
given by p and (2.4) is satisfied. We recover (3.1) in the limit as n — oo, since p acts
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Asr—0 As r— o0 As n— o0
P | b\’ 2I'(2/n) 1 (r<b)
r n 172/r2 (r>b)

97 3 (b\ 2n <£>n+1 (b 2r(2/n) 0 (r<b)
0z az \r ) n+2\b 9z \ r? n d(b*/r*) [0z (r>b)
TaBLE 1. Leading-order asymptotic properties of the integral .# (3.8) in the limits r — 0,
r — o0 and n — oo, assuming n > 1.

like the Heaviside step function and 2I"(2/n)/n — 1. It follows from (3.6) that

2u, nr rdw,
“r = <_ b ar@m2’ "3 d: w”)’ (3.7)

where
I = 22/ RpdR (3.8)
= Jo

is the average amount of plume fluid at a given height within a disk of radius r.
Hence, combining (3.6) and (3.7), together with the condition that aw, = 0, we obtain

2u, n r
an, = ( b mpi +2dz_2az(ij)ao>a (39)

and so it follows that
r o

We list some asymptotic properties of the quantity .# in table 1 under the assumption
that n > 1. In the specific case of a Gaussian shape profile, n =2, then . = (1—p)b*/r>.
It is clear that in general the total radial velocity, u, behaves in an analogous way to
the limiting top-hat case, with u being positive for small r and negative for large r
(compared to b).

Figure 2(a) plots the contribution to the total radial velocity field, u, of the plume
fluid, pu,, and the ambient fluid, au,, normalized by the entrainment velocity. Bold
solid lines are the top-hat shape profile, n — oo, thin lines are the Gaussian shape
profiles, n =2, and the dashed lines are an intermediate shape profile given by n = 20.
As was shown in (3.2), the plume fluid in a top-hat plume has a radial velocity which
increases linearly with r inside the plume, capturing the spreading of the plume and
the fact that (in general) dw,/dz <0 in a plume. Outside the top-hat plume w, does
not contribute to the total fluid velocity since pu, =0. The ambient fluid propagates
from infinity towards the axis, with constant transport 2mru inwards outside the
plume, and crosses the plume boundary at r =b, capturing the entrainment process.

Figure 2(b) shows the total radial fluid velocity, u, normalized by the entrainment
velocity, for the three shape profiles. In particular, inside the top-hat plume the radial
velocity again increases linearly with r, but the total radial fluid velocity is less than
the velocity of the plume boundary owing to the flux of the ambient fluid crossing
the boundary. For all values of n > 1, we see that the dominant contribution to the
radial velocity in the far field is the inward ambient fluid velocity due to entrainment
of ambient fluid into the plume.
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FIGURE 2. (a) pu, and au,, normalized by the entrainment velocity, for different values of
the shape parameter n. Bold lines are for n — oo, thin lines are n =2 and dashed lines are
n=20. pu, is positive, demonstrating that the plume fluid propagates outwards, whereas au,
is negative, demonstrating that the ambient fluid propagates inwards. () The combined u
field, normalized by the entrainment velocity, showing that as r — oo, u — au,, i.e. in the far
field virtually all fluid motion is inward flow induced by entrainment, while for small r, u is
positive, indicating that the radial velocity of the plume fluid dominates near the axis.

4. Conclusions

We have considered the radial velocity fields of the classical MTT model plumes and
have highlighted some apparent difficulties with the model. We have demonstrated
that there is a discontinuity, and indeed sign change, in the radial velocity of a top-hat
plume and the velocity of the plume boundary does not coincide with the local fluid
velocity. These apparent inconsistencies can be rectified by use of a two-fluid model.
Within this two-fluid model there is a constant flux of ambient fluid into the top-hat
plume and the velocity of the plume boundary is given by the local velocity of the
plume fluid which acts as a phase boundary. The two-fluid model also enables us to
write down an explicit mechanism for the conversion of ambient fluid into plume fluid,
through entrainment across this phase boundary. This fundamental concept can be
generalized to continuous profiles. As an example we consider a one-parameter family
of self-similar profiles that includes both top-hat and Gaussian profiles as specific
cases. The plume fluid rises upwards (owing to its buoyancy) and spreads outwards
(owing to the entrainment and relabelling of ambient fluid) while the ambient fluid
flows horizontally inwards to supply this entrainment. Near r/b =0, the total radial
flow is outwards, dominated qualitatively by the behaviour of the plume fluid, while
in the far field (r/b — o0) it is dominated by the purely horizontal inward flow of the
ambient fluid. The vertical flow is naturally always determined by the behaviour of
the buoyant plume fluid.

This self-consistent description of the total fluid velocity in terms of contributing
ambient- and plume-fluid components is particularly important when considering
plumes with temporal variations in the source conditions. If we wish to calculate the
appropriate time-dependent bulk generalizations of the MTT model equations (2.9)
starting from the pointwise Euler equation, the appropriate measure of radial velocity
is u, together with the corresponding fluid divergence V - u, (see Scase, Caulfield &
Dalziel 2006a; Scase et al. 2006b). For example if we consider the extreme case of
a starting Gaussian plume we can see how a Gaussian distribution of plume-fluid
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divergence (due to entrainment) balanced by an appropriate convergence of ambient
fluid being entrained, can create and maintain the plume in a self-similar fashion.
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